
Developing a Pinball Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Philip Trettner∗ Philipp Bartels† Theo Dreßen‡ Mateusz Buglowski§ Michael Herwig¶

Figure 1: Our pinball table is of high geometrical complexity and is rendered with advanced lighting techniques and modern graphics
effects. It is stored in a large XML file with embedded Lua-scripts which is designed to be human-editable.

Abstract

In this practical course, a pinball game was to be developed with
a focus on the graphics and technical detail rather than the game-
play. We implemented a variety of modern 3D effects and used the
Bullet engine for complex rigid body physics. The pinball table is
stored in a huge XML-file that contains the composition and ma-
terial configuration of all 3D object as well as Lua-scripts that are
responsible for a majority of gameplay elements.

Our game is set in a futuristic and surreal world consisting of metal-
lic and crystal-like materials. Mysterious energies power the pinball
table as well as a maelstrom of background objects.

Keywords: game programming, pinball game, advanced graphics

1 Graphics

As our setting was metallic-looking and surreal, we employed sev-
eral advanced rendering and lighting techniques in order to realize
a graphically formidable and plausible game.

Instead of normal Phong lighting, which almost always looks like
plastic, we used the Cook-Torrance reflectance model [Cook and
Torrance 1982] for metallic looking surfaces. In addition to Phong
shading, we utilized normal mapping to achieve high surface detail
even on objects with low polygon count. Glow is used to enhance

∗philip.trettner@rwth-aachen.de
†philipp.bartels@rwth-aachen.de
‡theo.dressen@rwth-aachen.de
§mateusz.buglowski@rwth-aachen.de
¶michael.herwig@rwth-aachen.de

Figure 2: 5 different ball materials with different textures, reflec-
tion, specular, glow and roughness parameter.

exceptionally bright spots and simulate scattering in air and lenses
(cf. top left of figure 1). The scene is lit by one point light with
exponential soft shadows [Annen et al. 2008]. In order to greatly
enhance the metallic look of the scene, we render the complete (dy-
namic) background into a cubemap that is used for reflection. When
updating the cubemap, the previous one is used for calculating re-
flections yielding the illusion of multiple reflections.

Our material system allows different textures and lighting parame-
ters for every object. Figure 2 shows a variety of materials for the

Figure 3: Fast balls leave metal trails, cause scratches on the
ground and throw out sparks on collision.



Figure 4: Thousands of background objects, moving, rotating, con-
nected by lightning. Objects are drawn with instancing, lightning
with geometry shaders.

balls. These balls have several means to visually interact with the
table (cf. figure 3). Scratches caused by a ball are rendered into the
ground texture and alter color, glow, normal and lighting parame-
ter. Sparks and metal trails are created by a geometry shader and
are able to cast shadows. Some balls project a light pattern onto
their vicinity.

The background of the pinball table consists of thousands of mov-
ing metal objects with lightning that bounces between them (cf. fig-
ure 4). As this background is drawn six times for updating the cube-
map and once for the actual scene, the rendering needs to be excep-
tionally fast, which is achieved by instanced objects and geometry
shader generated lightning. Other minor graphics features include
FXAA for anti-aliasing and fully integrated 3D text for menus and
ingame messages.

2 Physics

The actual gameplay heavily relies on the Bullet physics engine
[Bul Sep., 2012] as the complete table is part of the simulation in
which the balls are launched, collide, repel, accelerate, score and
finally vanish.

One particularly challenging problem is the high speed of the balls.
Typical physics engines only support rudimentary continuous col-
lision detection which is necessary to prevent high velocity balls to
pass through other objects because the collision is not recognized
properly. This problem is even further enhanced if the objects are
triangle meshes without sound definitions of inside and outside in
which case balls can be trapped within objects. To circumvent this
problem especially for the flippers, we approximated the meshes
by a combination of primitives known by Bullet which greatly en-
hances the simulation stability.

3 Gameplay

The most basic gameplay is provided by Bullets rigid body simu-
lation. Additionally, our engine is notified in case the ball collides
with certain objects or enters and leaves predefined areas. These
events, together with some additional features like timers and ap-
plying impulses and forces are made available to a Lua scripting
engine. Using scripts to implement high-level gameplay like mis-
sions or quests is not uncommon in games and allow for fast devel-
opment of complex behavior.

In our case, several parts of the game are controlled by Lua. The ac-
celerators (cf. figure 5(b) and (c)) can accelerate the balls based on
their materials or if previous missions are fulfilled. Quests are pre-
sented to the player in regular intervals and demand fulfillment of
several criteria like pressing one button of each color. The scoring
mechanism is also controlled by scripts.

(a) (b) (c)

Figure 5: Several detailed game objects: (a) looping, (b) triple
accelerator, (c) railgun accelerator.

We designed the interface of the scripting engine to be as general
as possible such that the creativity of our level designer is limited
by a minimum.

4 Assets

Our assets came from several inhomogeneous sources like 3ds Max,
Blender, Photoshop and GIMP. As a unified and easily extendable
baseline we chose .obj files for models and .png (and sometimes
.jpg) for textures.

At first, we were under the impression that we have to write a level
editor and designed a feature rich XML-based file format for our
table. After this misunderstanding was resolved we simplified our
file format in order to make it easily understandable and modifiable
by humans. This XML file additionally contains Lua scripts such
that the complete description of the scene (“which objects are where
and with what material parameter”) together with the gameplay (the
scripts) are in one file. While this approach leads to huge files (our
level consists of about 3000 lines), editing, modifying and extend-
ing the level becomes an easy task for an adept level designer.

We designed the file format with relative paths to resources such
that it is in theory possible to create a folder consisting of the level
XML and all assets (textures and models) that can be bundled and
shipped as “one level”. A small exception is that the shaders are
treated in a special way and cannot be included in the level folder.

5 Conclusion

Pinball games communicate a lot of its gaming experience by flashy
graphics and fast gameplay. We developed a modern 3D game with
rich graphics and consistent style to achieve a visually appealing
game. A rigid body physics simulation allows for plausible and
complex gameplay, while assets that are rich in detail further en-
hance the singular atmosphere that we ached to create. Our level
file format permit extensive level design and bundles “level fold-
ers”. Even though we started with ambitious goals, we were only
forced to abandon few of them and through good teamwork we were
able to maintain a pleasurable working atmosphere.

References

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E.,
AND KAUTZ, J. 2008. Exponential shadow maps. In graph-
ics interface 2008, Canadian Information Processing Society, GI
’08, 155–161.

Sep., 2012. Bullet physics engine. bulletphysics.org/wordpress/.

COOK, R. L., AND TORRANCE, K. E. 1982. A reflectance model
for computer graphics. ACM Trans. Graph. 1, 1 (Jan.).


