Developing a Pinball Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Iraklis Dimitriadis™ Daniel Haririf

Christopher Tenter$

Johannes Klsckner?

Figure 1: Concept art vs. final version.

Abstract

Our idea was to create a 3d pinball game focusing on human
anatomy. Emphasis was laid on a more dynamic game environ-
ment than in conventional pinball tables. This is mainly achieved
by making use of certain graphics effects, that represent a dark hos-
tile, yet playful environment.

The table itself consists of objects like a brain, a beating heart and
several other organs. All in all it strongly resembles the internals of
a human body.

Keywords: game programming, pinball game

1 Gameplay

The underlying game mechanics do not differ much from other
standard pinball games. It is possible to trigger certain actions by
shooting the ball against dynamic objects on the table. For instance
whenever the ball hits the brain, a randomly chosen mission will
be assigned. A typical mission may involve hitting one or multiple
objects a given amount of times.

*iraklis.dimitriadis @rwth-aachen.de

T daniel.hariri @ rwth-aachen.de

tjohannes kloeckner @rwth-aachen.de
Schristopher.tenter@rwth-aachen.de

In order to implement this kind of interaction we had to design a
trigger-event system that keeps track of what should happen, when
a certain object was hit.

There are several types of triggers that make up the complete game
dynamics. This includes accelerating or bouncing of the ball or
simply rewarding the player with a hit score. Another example is
the rescue feature whereby the ball is bounced back into the field
when it rolls down sideways to the flippers for the first time.

2 Rendering

Fitting to the general idea of this game we chose to implement
graphics effects that work well in darker themes. With the forward
rendering approach instead of deferred lighting we are able to have
different kinds of shading methods for each object. For instance the
ball has a transitional surface with a bright color at the top and a
darker non-gloomy red at the bottom. This gives the impression,
that it actually is one of the light emitters in the scene. However,
the forward shading technique forced us to have lots of different
versions of similar shaders, whereby only a little, but crucial code
is different. In our case the combinatorial problem turned out to be
small enough to manage by hand though.

Normal mapping helps to add detail to the game scene, especially
in such a dark environment. They enable us to have more bumpy
and organic surfaces without increasing the geometric detail. In



fact every visible object is rendered with a normal mapping shader
and whenever a normal map was not available, we used a dummy
normal map which simulates standard Goraud shading instead.

Subsurface scattering is a technique we implemented to give the
heart a more dramatic look. Basically it simulates translucent ob-
jects that let a certain amount of light shine through instead of com-
pletely blocking it. In our context this means that the pinball il-
luminates the heart whenever it passes just behind it, giving it a
realistically organic look.

In our game object animations are accomplished via geometry mor-
phing, which is fully performed on the GPU. Morphing allows us
to present a more active and dynamic pinball table suitable to the
general game theme. Furthermore the constant flow of particles en-
force this lively setting, even though the particle system was not
utilized to its full extent. Nevertheless our particle system ended up
being highly customizable by supporting a wide range of parame-
ters such as speed, size, shape and soft scene intersection [Lorach
2007]. While the constant flow of blood out of veins are modeled
via view aligned quads, we experimented with intersecting quads
for blood splatter. The latter type copes with the perspective prob-
lem where a particle is not in a square shape, but stretched along
one axis. Since splatters are aligned along their own traveling di-
rection the viewer often observes them from a nearly perpendicular
angle, which should be avoided at all costs.

The particle system is extended by the use of decals. Basically par-
ticles can optionally detect collisions with the scene and then, again
optionally, spawn decals at the intersection point. Decals were
mainly used to create blood stains spawned from blood streams,
but in fact they are tightly integrated into the particle system leav-
ing room for further experiments. However, decals proved to be one
of the major performance bottlenecks in the later stage of the game.
More precisely, the first decal implementation clipped a bounding
box in the size of the wanted decal against the scene on the CPU,
which performed well for low-poly meshes in the order of about
2500 triangles. Nevertheless, with a more detailed mesh in later
stages, the decal system was upgraded to a much faster GPU clip-
ping method as suggested in Gears of War [Smedberg and Wright
2009].

Finally we implemented a post processing glow effect to give light
emitters such as lamps and the ball a more realistic appearance.

3 Asset pipeline

Due to the strict time restraint of this course developing a level ed-
itor seemed out of place. However, hardcoding the complete level
scenegraph quickly became unfeasible, so a new solution had to be
found. Given the simple to use interface and accessible scripting
support, we turned 3ds Max into our level editor of choice. With
our exporter script, the level designer can quickly build and modify
the complete game scenegraph without actually changing a single
line of game code. This approach payed off rather early in the de-
velopment process of this course particularly due to the many ge-
ometry meshes, physics colliders and trigger objects. It is crucial to
understand that the script is used for the level editing aspect only.
In fact, we do not export any kind of 3D mesh data with it. In-
stead it only creates a meta text file containing the scenegraph in a
tree structure with typical information like transformation matrices,
bounding volumes, physics parameters and references to geometry
data files.

(@) ()
Figure 2: (a) Glow effect on ball. (b) Particles and decals.

4 Software Engineering

In the early project stage we carefully discussed requirements and
how to create a well designed software architecture. Generally
it is is a good practice to continue the model-view-controller pat-
tern based on the given code template. One of the most important
aspects was designing the trigger-event system, since many com-
ponents like trigger object, collision detection and arbitrary event
functions have to be taken care of this vital part of the game logic.

Nevertheless, we preferred high functionality and easy integration
over good architecture for the rendering code in this project. Parti-
cles, decals and glow are examples that work entirely independent
from the scene renderer. This modular approach allowed us to add
new features without having the risk to run into compatibility prob-
lems, which may happen in a stricter designed rendering architec-
ture. Considering the short development time such fatal mistakes
can easily avoided by sticking to a more open code design. We
even ignored good OOP practices like data isolation for modular
classes to allow open access to eventually needed data for the scene
rendering routine.

5 Conclusion

In contrast to standard mechanical pinball games, the organic na-
ture of our anatomy pinball allowed us to translate interesting ideas
regarding animation of regular pinball objects. A dark atmosphere
is created by the use of lack of global illuminating light and match-
ing rendering techniques such as normal mapping and subsurface
scattering. Especially the exporter script immensely helped us to
cut down development overhead. Unfortunately we were not able
to implement all our ideas, however, we managed to convey the
impression of a vivid environment.

6 References

References

LoRACH, T. 2007. Soft particles.

SMEDBERG, N., AND WRIGHT, D. 2009. Rendering techniques
in gears of war 2.



